Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Almeida, Gabriela Costa de"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Inteligência artificial na classificação de uso e cobertura da terra no semiárido de Pernambuco
    (2020-11-03) Almeida, Gabriela Costa de; Silva, Emanuel Araújo; Moreira, Giselle Lemos; http://lattes.cnpq.br/6171199372079024; http://lattes.cnpq.br/2765651276275384
    The Brazilian Tropical Dry Forest, known as Caatinga, is located in Brazil's northeastern region and has severe climatic characteristics, with dry weather and poorly distributed rainfall. Those climatic characteristics make Remote sensing analysis difficult due to its large vegetation differences between the dry and rainy periods. In order to help the remote sensing analysis in this biome, this work aims to test different Artificial Intelligence algorithms through supervised classification and to identify land use and land cover patterns in the city of Petrolina, in Pernambuco. Three algorithms were tested: Random Forest, Artificial Neural Networks, and K-Nearest Neighbors using QGIS and RStudio software based on Landsat 8 images from the dry period. Twenty samples from the classes were selected: Water, Agriculture, Urban Area, Forest, and Exposed Soil, and these samples served as a basis for training the algorithms for the classification of images. Occupancy data and precision quality assessment were obtained using Mapping Accuracy and Kappa Index, respectively: 0.9878706 and 0.9653555 for Random Forest; 0.9199973 and 0.9454833 for Artificial Neural Networks, 0.9873741 and 0.9598640 for K-Nearest Neighbors, all being considered excellent. These values were higher than those found in the most commonly used algorithms, as in the Maximum Likelihood algorithm. It was observed that the use of artificial intelligence algorithms could generate better results in the classification of land use in semiarid regions.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão