TCC - Engenharia Eletrônica (UACSA)

URI permanente para esta coleçãohttps://arandu.ufrpe.br/handle/123456789/2917

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Item
    Filtragem de sinais sobre grafos aplicada à classificação de dados ruidosos definidos em estruturas irregulares
    (2023-10-03T03:00:00Z) Medeiros, Jorge Barros; Ferreira, Felipe Alberto Barbosa Simão; http://lattes.cnpq.br/9939255113143786; http://lattes.cnpq.br/9517722947492097
    As redes convolucionais baseadas em grafos (Graph Convolutional Networks, GCN) permitem que modelos de redes neurais profundas aprendam a partir de dados definidos em estruturas irregulares representados por meio de um grafo. Essa abordagem tem atraído cada vez mais atenção nos últimos anos. Tais algoritmos geralmente aprendem com base na informação associada aos vértices e arestas do grafo, sendo possível utilizá-las para melhorar o desempenho de diversas tarefas como classificação de vértices, de um sinal definido sobre o grafo ou do próprio grafo. O objetivo deste trabalho é avaliar a classificação de dados ruidosos dispostos em uma estrutura irregular a partir do treinamento de filtros passa-baixas realizado pelas camadas convolucionais de uma GCN. Os filtros são projetados e aplicados baseando-se em ferramentas de processamento de sinais sobre grafos como a transformada de Fourier sobre grafos. A rede neural convolucional baseada em grafos realizará o aprendizado de parâmetros para diferentes escalas de ruídos no domínio da transformada de Fourier sobre grafos que sejam capazes de extrair informação relevante para classificação do conjunto de dados ruidosos.