01. Universidade Federal Rural de Pernambuco - UFRPE (Sede)
URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/1
Navegar
Item Análise de desempenho do Gemini na estimativa de peso de alimentos por imagem(2025-08-06) Silva, Carlos Gabriel Farias da; Garrozi, Cícero; http://lattes.cnpq.br/0488054917286587Com o avanço das inteligências artificiais multimodais, cresce o interesse em sua aplicação na área da saúde para facilitar a análise nutricional e auxiliar no combate à obesidade. No entanto, a confiabilidade desses modelos para identificar alimentos e estimar porções a partir de imagens ainda é incerta, sendo fundamental mensurar seu desempenho de forma objetiva. Este trabalho avalia a capacidade do modelo Gemini de classificar ingredientes e estimar seus respectivos pesos (em gramas) a partir de fotografias de refeições. Para isso, foi desenvolvido um sistema automatizado que envia requisições à API do Gemini, utilizando um prompt textual padronizado, elaborado com técnicas de engenharia de prompt, e uma lista de ingredientes de referência. As respostas do modelo, obtidas em formato JSON, foram comparadas com dados reais para análise de desempenho. Os resultados obtidos nos experimentos indicaram um baixo desempenho geral. Na classificação de ingredientes, o modelo apresentou baixa precisão e sensibilidade (recall), com dificuldade em detectar itens como temperos e condimentos (por exemplo, azeite e sal) que estavam misturados a outros alimentos, embora tenha obtido altas taxas de aceno para ingredientes visualmente distintos, como morangos e ovos mexidos. Na estimativa de peso, o desempenho também foi insatisfatório, com altos valores de erro (MAE e RMSE) e coeficiente de determinação (R2) negativo, evidenciando tendência à superestimação e desempenho inferior a uma simples predição pela média.Item Aplicação web para detecção automática de URLs maliciosas com aprendizado de máquina(2025-08-08) Souza, Celso Soares Cassiano de; Oliveira, Lidiano Augusto Nóbrega de; http://lattes.cnpq.br/7399493881755815A segurança cibernética tem se tornado uma das principais preocupações da era digital, impulsionada pelo crescimento acelerado da internet e pela proliferação de ameaças como phishing, malware e roubo de dados. Este trabalho propõe uma abordagem baseada em aprendizado de máquina para classificar URLs como legítimas ou maliciosas, utilizando um conjunto abrangente de atributos extraídos diretamente das URLs e de fontes complementares, como registros WHOIS e informações de rede. Foram aplicados e analisados algoritmos como Random Forest, SVM e XGBoost sobre um conjunto de dados coletado de fontes confiáveis, como PhishTank e Kaggle. As características consideradas englobam aspectos léxicos, informações de rede, conexão e reputação. A avaliação dos modelos foi conduzida por meio de métricas como acurácia, precisão, recall e F1-score, evidenciando um desempenho satisfatório na detecção de sites maliciosos. Como aplicação prática, foi desenvolvida uma plataforma interativa com Streamlit, permitindo que qualquer usuário insira urna URL e receba uma análise imediata sobre sua legitimidade. A análise de importância das variáveis forneceu insights valiosos sobre os fatores mais influentes no processo de classificação, contribuindo tanto para a transparência quanto para a evolução futura do sistema.Item Aprendizado de máquina não supervisionado aplicado na dinâmica de preços de combustíveis no Brasil(2025-08-05) Lima, Andressa Luana Santana de; Gouveia, Roberta Macedo Marques; http://lattes.cnpq.br/2024317361355224; http://lattes.cnpq.br/0993590347039876Este trabalho realiza uma análise exploratória e de clusterização dos dados públicos da Agência Nacional do Petróleo (ANP) para os preços de combustíveis no Brasil em 2024. A partir de variáveis numéricas agregadas por região e por produto, foi aplicado o algoritmo K-means para identificar padrões de comportamento no mercado. As variáveis selecionadas buscaram representar aspectos como níveis médios de preço, variações sazonais, volume de registros e distribuição de revendas. Os resultados apontaram diferenças estruturais entre regiões e entre combustíveis, evidenciando a heterogeneidade do setor. O estudo evidencia a importância do uso de técnicas de agrupamento para explorar padrões relevantes no mercado de combustíveis.Item MobiRural: promovendo acessibilidade e autonomia com rotas colaborativas(2025-08-06) Lima, Filipe de Freitas; Monteiro, Cleviton Vinicius Fonsêca; http://lattes.cnpq.br/9362573782715504; http://lattes.cnpq.br/5135426412225549A crescente expansão do da população ao com deficiência a nível mundial demanda o desenvolvimento de ferramentas que promovam a autonomia e melhorem a qualidade de vida, reduzindo barreiras e preconceitos. O desenvolvimento do MobiRural tem como propósito simplificar a navegação e o acesso de informações relevantes de forma acessível aos principais prédios e pontos de interesse no campus sede da Universidade Federal Rural de Pernambuco (UFRPE). Por meio da aplicação desenvolvida, observa-se que é possível traçar rotas otimizadas com percursos mais curtos e seguras com a inclusão colaborativa de pontos de perigo, resultando em maior autonomia para todos os usuários, com ênfase no público cego e cadeirante.
