Detecção de fake news: uma abordagem baseada em Large Language Models e Prompt Engineering
Data
2025-03-20
Autores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Este trabalho aborda o uso de Large Language Models (LLMs) para a detecção de fake news ou notícias falsas no idioma inglês e português. As notícias falsas têm gerado impactos negativos, como desinformação e conflitos sociais, sendo amplamente disseminadas pelas redes sociais. Embora métodos tradicionais de verificação sejam eficazes, como checagem manual e agências de verificação de fatos, a aplicação de algoritmos de machine learning e deep learning trouxe avanços importantes. No entanto, esses modelos apresentam limitações, como perda de contexto semântico e custos de treinamento. A introdução da arquitetura Transformers possibilitou avanços significativos com LLMs, como BERT, GPT e T5, devido à sua capacidade de compreender padrões linguísticos complexos. Este trabalho propõe uma abordagem de detecção de notícias falsas a partir recuperações de informações pela Web e o modelo Qwen2.5-7B-Instruct, comparando o desempenho com propostas que combina recuperação de informações com modelos tradicionais e LLMs. Os resultados destacam vantagens e desvantagens, contribuindo para futuras melhorias em sistemas automatizados de detecção de notícias falsas.
Descrição
Palavras-chave
Notícias falsas, Inteligência artificial, Aprendizado do computador, Processamento de linguagem natural (Computação), Redes neurais (Computação), Recuperação da Informação
Referência
FONSECA, Pablo Weslley Silva da. Detecção de fake news: uma abordagem baseada em Large Language Models e Prompt Engineering. 2025. 66 f. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Recife, 2025.
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como openAccess