Bacharelado em Ciência da Computação (Sede)
URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/6
Siglas das Coleções:
APP - Artigo Publicado em Periódico
TAE - Trabalho Apresentado em Evento
TCC - Trabalho de Conclusão de Curso
Navegar
Item Coh-Metrix PT-BR: uma API web de análise textual para à educação(2021-03-02T03:00:00Z) Salhab, Raissa Camelo; Mello, Rafael Ferreira Leite de; http://lattes.cnpq.br/6190254569597745; http://lattes.cnpq.br/6761163457130594O CohMetrix é um sistema computacional que provê diferentes medidas de análise textual incluindo legibilidade, coerência e coesão textual. Essas medidas permitem uma análise mais profunda de diferentes tipos de textos educacionais como redações, respostas de perguntas abertas e mensagens em fóruns educacionais. Este artigo apresenta o protótipo, site e API, com a adaptação das medidas do CohMetrix para a língua portuguesa do Brasil.Item Inferência automática de nível de dificuldade de receitas culinárias usando técnicas de processamento de linguagem natural(2020-12-21T03:00:00Z) Britto, Larissa Feliciana da Silva; Pacífico, Luciano Demétrio Santos; Ludermir, Teresa Bernarda; http://lattes.cnpq.br/6321179168854922; http://lattes.cnpq.br/9521600706234665; http://lattes.cnpq.br/5058497100007411Neste trabalho, será proposta uma ferramenta de inferência do nível de dificuldade de receitas culinárias. A inferência será feita através da classificação textual dos modos de preparo das receita. A ferramenta será parte fundamental no desenvolvimento de um sistema de recomendação de receitas culinárias sensível ao contexto baseado em conteúdo. Serão adotados alguns dos principais classificadores da literatura de Classificação de Texto, além de diferentes métodos de extração de características. Uma avaliação experimental é executada, no intuito de selecionar as melhores abordagens para compor o sistema.Item Recomendação e geração de receitas baseada na substituição de ingredientes(2020-12-21T03:00:00Z) Oliveira, Emília Galdino de; Pacífico, Luciano Demétrio Santos; Ludermir, Teresa Bernarda; http://lattes.cnpq.br/6321179168854922; http://lattes.cnpq.br/9521600706234665; http://lattes.cnpq.br/6278486720525640Atualmente, mesmo com o aumento no número de páginas web e sistemas de compartilhamento de receitas, usuários podem ter dificuldade na busca por pratos específicos através da enorme quantidade de dados contidos nesses repositórios. Encontrar receitas que se adequem a um conjunto de ingredintes em mãos, contemplando as vontades e restrições desses usuários, pode ser uma tarefa demorada ou mesmo impossível. Neste trabalho, um sistema de recomendação e geração de receitas é proposto, baseado na substituição de ingredientes das receitas e em uma abordagem focada nos dados, em uma tentativa de ajudar os usuários a encontrarem receitas que contemplem tanto seus desejos, quanto suas restrições alimentares, evitando desperdícios.
