01. Universidade Federal Rural de Pernambuco - UFRPE (Sede)
URI permanente desta comunidadehttps://arandu.ufrpe.br/handle/123456789/1
Navegar
2 resultados
Resultados da Pesquisa
Item Sistema de aprendizado de máquina para predição do tempo de esforço de tarefas de desenvolvimento de software(2021-12-14) Sitonio, Tiago Pedro da Silva; Monteiro, Cleviton Vinicius Fonsêca; http://lattes.cnpq.br/9362573782715504; http://lattes.cnpq.br/0915757895643807A estimativa de esforço é uma das principais métricas para o planejamento e gerenciamento do processo de desenvolvimento de software, pois proporciona auxílio na previsão de custos e prazos para realização de um projeto. Em consideração a isso, este trabalho teve como objetivo realizar uma análise do processo de construção de um modelo de Aprendizado de Máquina com base na metodologia CRISP-DM, utilizando Algoritmo de Aprendizado de Máquina Automatizado (AutoML) para encontrar o melhor algoritmo de regressão como objetivo de encontrar a estimativa de tempo de determinada atividade. Para esta análise, dados de atividades realizadas por 29 empresas foram utilizados. O banco de dados é constituído por diferentes tipos de dados como, por exemplo, dado Numérico em formato de Linguagem Natural para descrever as atividades. Por causa disso foi realizado o processo de Tokenização a fim de transformar em dados totalmente regressivos para execução dos algoritmos. Em conjunto a isto, métodos de análise dos dados, pré-processamento, métodos de afunilamento como Seleção de Feaures, Alteração de Pesos e Combinação de Colunas serão aplicados para realizar análises do banco de dados.Este projeto foi desenvolvido através da linguagem de programação Python com apoio das suas bibliotecas, dentre elas a biblioteca Pandas para manipulação e análise de dados e Scikitlearn para acesso a algoritmos de Aprendizado de Máquina. Os resultados obtidos e avaliados apontam que o tratamento individual para cada empresa com pré-processamento e construção do modelo de algoritmo de previsão devem ser levados em consideração para encontrar os melhores resultados de estimativa de esforço por meio dos algoritmos.Item Comparação de técnicas de classificação para predição de esforço no desenvolvimento de software(2019-01-31) Uehara, Matheus Pitancó de Lima; Soares, Rodrigo Gabriel Ferreira; http://lattes.cnpq.br/2526739219416964; http://lattes.cnpq.br/2761038597182432A estimação de esforço de atividades é uma etapa fundamental no desenvolvimento de software, ela é de fundamental importância para que o software seja entregue com qualidade no prazo estimado. Estimativas realizadas de forma isolada das equipes de desenvolvimento tendem a se basear na estimativa de um especialista, essas estimativas são facilmente obtidas porém não refletem fielmente o esforço necessário do responsável pelo desenvolvimento da atividade, enquanto abordagens que envolvem o time de desenvolvimento tendem a ser mais assertivas no entanto demandam mais tempo e mais pessoas envolvidas neste processo de estimativa. Neste trabalho é apresentado como o aprendizado de máquina pode auxiliar de forma automatizada os times na melhoria de estimativas de esforço diminuindo o tempo necessário para sua realização. Através dos experimentos foram obtidos resultados que validam a viabilidade da técnica utilizada para extração de características e classificação na estimativa de esforço a partir da descrição textual das atividades. Os resultados dos classificadores variaram de 31% à 33% de F-measure.
