Understanding CSCL Peer Feedback Contributions: An Automated Content Analysis Approach

Imagem de Miniatura

Data

2023-03-23

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Peer feedback has been widely used in computer-supported collaborative learning (CSCL) setting to improve students’ engagement with massive courses. Although the peer feedback process increases students’ self-regulatory practice, metacognition, and academic achievement, instructors need to go through large amounts of feedback text data which is much more time-consuming. To address this challenge, the present study proposes an automated content analysis approach to identify relevant categories in peer feedback based on traditional and sequence-based classifiers using TF-IDF and content-independent features. We use a data set from an extensive course (N = 231 students) in the setting of engineering higher education. In particular, a total of 2,444 peer feedback messages were analyzed. The results have shown promising outcomes with both TF-IDF and content-independent features. The Conditional Random Fields (CRF) classification model based on the TF-IDF features achieved the best performance, considering all the metrics computed in the analysis. The results illustrate that the ability to scale up the automatic analysis of peer feedback provides new opportunities for student improved learning and improved teacher support in higher education at scale.

Descrição

Este TCC trata-se de um pré-print do artigo de conferência intitulado "Understanding Peer Feedback Contributions Using Natural Language Processing" publicado anteriormente no e-book Responsive and Sustainable Educational Futures da editora Springer, Cham, sob o endereço: https://link.springer.com/chapter/10.1007/978-3-031-42682-7_27. Recomendamos o acesso e a citação do artigo com as credenciais do e-book supramencionado.

Palavras-chave

Content Analysis, Peer Feedback, Natural Language Processing

Referência

CASTRO, Mayara Simões de Oliveira. Understanding CSCL Peer Feedback Contributions: An Automated Content Analysis Approach. 2023. 8 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2023.

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como openAccess