Understanding CSCL Peer Feedback Contributions: An Automated Content Analysis Approach

dc.contributor.advisorMello, Rafael Ferreira Leite de
dc.contributor.advisorLatteshttp://lattes.cnpq.br/6190254569597745
dc.contributor.authorCastro, Mayara Simões de Oliveira
dc.contributor.authorLatteshttp://lattes.cnpq.br/6874213447584388
dc.date.accessioned2025-08-07T14:28:04Z
dc.date.issued2023-03-23
dc.degree.departamentcomputacao
dc.degree.graduationbacharelado em ciencia da Computacao
dc.degree.levelbachelor's degree
dc.degree.localRecife
dc.descriptionEste TCC trata-se de um pré-print do artigo de conferência intitulado "Understanding Peer Feedback Contributions Using Natural Language Processing" publicado anteriormente no e-book Responsive and Sustainable Educational Futures da editora Springer, Cham, sob o endereço: https://link.springer.com/chapter/10.1007/978-3-031-42682-7_27. Recomendamos o acesso e a citação do artigo com as credenciais do e-book supramencionado.
dc.description.abstractPeer feedback has been widely used in computer-supported collaborative learning (CSCL) setting to improve students’ engagement with massive courses. Although the peer feedback process increases students’ self-regulatory practice, metacognition, and academic achievement, instructors need to go through large amounts of feedback text data which is much more time-consuming. To address this challenge, the present study proposes an automated content analysis approach to identify relevant categories in peer feedback based on traditional and sequence-based classifiers using TF-IDF and content-independent features. We use a data set from an extensive course (N = 231 students) in the setting of engineering higher education. In particular, a total of 2,444 peer feedback messages were analyzed. The results have shown promising outcomes with both TF-IDF and content-independent features. The Conditional Random Fields (CRF) classification model based on the TF-IDF features achieved the best performance, considering all the metrics computed in the analysis. The results illustrate that the ability to scale up the automatic analysis of peer feedback provides new opportunities for student improved learning and improved teacher support in higher education at scale.
dc.format.extent8 f.
dc.identifier.citationCASTRO, Mayara Simões de Oliveira. Understanding CSCL Peer Feedback Contributions: An Automated Content Analysis Approach. 2023. 8 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, 2023.
dc.identifier.urihttps://arandu.ufrpe.br/handle/123456789/7495
dc.language.isoen_US
dc.publisher.countryBrazil
dc.publisher.initialsUFRPE
dc.relation.isversionofCastro, M.S.d.O. et al. (2023). Understanding Peer Feedback Contributions Using Natural Language Processing. In: Viberg, O., Jivet, I., Muñoz-Merino, P., Perifanou, M., Papathoma, T. (eds) Responsive and Sustainable Educational Futures. EC-TEL 2023. Lecture Notes in Computer Science, vol 14200. Springer, Cham. https://doi.org/10.1007/978-3-031-42682-7_27en
dc.relation.urihttps://doi.org/10.1007/978-3-031-42682-7_27
dc.rightsopenAccess
dc.rights.licenseAttribution-NonCommercial 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectContent Analysis
dc.subjectPeer Feedback
dc.subjectNatural Language Processing
dc.titleUnderstanding CSCL Peer Feedback Contributions: An Automated Content Analysis Approach
dc.typebachelorThesis

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Imagem de Miniatura
Nome:
tcc_art_mayarasimoesdeoliveiracastro_25.03.2025.pdf
Tamanho:
452.76 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.87 KB
Formato:
Item-specific license agreed upon to submission
Descrição: